Discovering physical concepts with neural networks

As a first step towards finding such an alternative, we introduce a neural network architecture that models the physical reasoning process and can be used to extract physical concepts from experimental data in an unbiased way. We apply the neural network to a variety of simple physical examples in classical and quantum mechanics, like damped pendulums, two-particle collisions, and qubits. The network finds the physically relevant parameters, exploits conservation laws to make predictions, and can be used to gain conceptual insights. For example, given a time series of the positions of the Sun and Mars as observed from Earth, the network discovers the heliocentric model of the solar system - that is, it encodes the data into the angles of the two planets as seen from the Sun.
Kommentare (0)
Keine Kommentare gefunden!